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The influence of group velocity dispersion (GVD) on the self-focusing of femtosecond laser pulses is investigated
by numerically solving the extended nonlinear Schrödinger equation. By introducing the GVD length LGVD into
the semi-empirical, self-focusing formula proposed by Marburger, a revised one is proposed, which can not only
well explain the influence of GVD on the collapse distance, but also is in good agreement with the numerical
results, making the self-focusing formula applicable for more cases.
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The propagation of femtosecond laser pulses in air has
been a hot area of research for nearly two decades since
its first experimental observation[1]. Numerous theoretical
and experimental studies have explored the nonlinear phe-
nomena during this process, such as high-order harmonic
generation[2], terahertz radiation[3,4], and supercontinua[5,6],
etc. Investigating these effects can be helpful to applica-
tions in remote sensing[7,8] and lightning protection[9,10], etc.
As one of the most fundamental and important

phenomena in the propagation process, self-focusing has
been the subject of intensive investigation in the past
50 years[11–15]. It has been shown that quite a few effects,
such as plasma formation, self-steepening, and group
velocity dispersion (GVD), etc., affect the propagation
of laser pulses. For the GVD effect, its influence on laser
propagation has been well studied in previous works, most
of which mainly focus on the processes after the nonlinear
focus of the laser pulses[16,17]. In practice, after the nonlin-
ear focus, there are quite a few factors that arrest the pulse
collapse, such as energy absorption resulting from multi-
photon ionization, plasma formation, and even plasma
explosion, including a Coulomb explosion, which can be
very complicated. In our work, attention is paid to the
factors that affect the collapse distance, i.e., the process
from the onset of propagation to the first occurrence of
pulse collapse.
In our recent work, we investigated the influence of

GVD on the self-focusing of femtosecond laser pulses in
air at different pressures by freezing the ratio of input
pulse power to the critical one of self-focusing[18]. When
GVD is considered, along with an increase in pressure
and a decrease in pulse duration, the collapse distance
Lc will become larger. In this case, the semi-empirical
Marburger law[13,14] cannot describe the collapse distance
in the case of strong GVD anymore. However, in that

work, we failed to propose a formula to describe the
collapse distance quantitatively. Usually, the collapse
distance can be obtained numerically by the nonlinear
Schrödinger equation (NLSE); however, it is not that easy
due to a great amount of computation, which is especially
the trouble in engineering applications. Can a concise and
explicit formula applicable for more cases be found? In this
Letter, we mainly focus on the question.

The propagation of a laser pulse in air can be described
by the extended NLSE, which governs the evolution of the
electric field envelope Eðr; z; tÞ (I ¼ jEj2 is the pulse
intensity given in units of W=m2) of the pulse traveling
at the group velocity vg ¼ ∂ω=∂kjω0
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The equation applies to femtosecond laser pulses mov-
ing in their group-velocity frame (τ ¼ t − z=vg), with
central wavenumber k0 ¼ 2π=λ0 and angular frequency
ω0 ¼ 2πc=λ0. Here, the first term on the right-hand side
accounts for the transverse diffraction, and the remaining
ones refer to the normal GVD with the coefficient
k00 ¼ ∂2k=∂ω2jω0

, the Kerr effect of air with the nonlinear
index of refraction n2, and the plasma absorption (real
part) and plasma defocusing (imaginary part) with an in-
verse bremsstrahlung cross section σ and electron collision
time τc. The last term describes multi-photon absorption
with the coefficient βK ¼ Kℏω0nairσK , where σK accounts
for the multi-photon ionization coefficient, nair denotes the
density of air, K ¼ modðU=ℏω0 þ 1Þ is the minimum
number of photons needed in the multi-photon ionization
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process, and U ¼ 11 eV is the characteristic ionization
energy of air.
The evolution of electron density ne can be given by

∂ne

∂τ
¼ ne

U
σjEj2 þ βK jEj2K

Kℏω0
− an2

e: (2)

The first and second terms on the right-hand side of
Eq. (2) account for the avalanche ionization and multi-
photon ionization, and the last one describes the electron
recombination with coefficient a ¼ 5.0 × 10−13 m3=s.
Most of the parameters in Eqs. (1) and (2) are related to

the pressure: n2ðpÞ ¼ n2ðp0Þp, τcðpÞ ¼ τcðp0Þ=p, σðpÞ ¼
σðp0Þ pð1þω2
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, k00ðpÞ ¼ k00ðp0Þp, nairðpÞ ¼ nairðp0Þp, and
βK ðpÞ ¼ βK ðp0Þp. Here, p is atmospheric pressure ex-
pressed in atm and p0 denotes the atmospheric pressure
at sea level. At a standard atmospheric pressure, the val-
ues of the nonlinear refractive index, GVD coefficient,
multi-photon absorption coefficient, electron collision
time, and inverse bremsstrahlung cross section are
n2 ¼ 3.2 × 10−23 m2=W, k00 ¼ 2 × 10−29 s2=m, β7 ¼ 6.5×
10−104 m11=W6, τc¼3.5×10−13 s, and σ¼5.1×10−24m2,
(the values of parameters β7, τc, and U are from Ref. [19]),
respectively.
Figure 1 presents the change of the maximum intensity

and beam radius with the propagation distance, as the
initial pulse duration and pressure are different (we select
a Gaussian pulse whose envelope is written as Eðr; tÞ ¼
E0 expð−r2=w2

0Þ expð−t2=τ20Þ throughout this Letter). It
can be clearly seen from the figure that along with an
increase in pressure and a decrease in initial pulse dura-
tion, the collapse distance (propagation length of the
self-focusing beam until collapse) Lc becomes larger.
Usually, the collapse distance can be well described by
a semi-empirical formula proposed by Marburger[13,14]:

Lc ¼ LDF=f½ðP in=PcrÞ1=2 − 0.852�2 − 0.0219g1=2; (3)

where LDF ¼ k0w2
0=2 refers to the Rayleigh length,

which is also called the diffraction length, and Pcr ¼
3.77λ20=8πn0n2 ¼ 2.815 GW is the critical power of self-
focusing[14]. P in denotes the power of the incident laser
pulse, and w0 accounts for the initial beam radius. From
Eq. (3), we see that in the case where P inðpÞ=PcrðpÞ and
the beam radius w0 are fixed, the collapse distance Lc is
independent of the pressure and initial pulse duration
of the femtosecond laser. Obviously, Marburger’s law fails
to describe the collapse in these cases.
For the above phenomenon, two explanations have been

proposed. In our previous work, it is attributed to the ef-
fect of GVD[18]. Since the GVD plays the role of defocusing
during propagation, and because it is enhanced with the
increase in pressure and decrease in initial pulse duration,
the collapse distance is larger in the case of a longer pulse
duration and higher pressure. Skupin et al. attributed it
to the increase of the self-focusing threshold Pth with
decreasing pulse duration[15,20], which has already been

verified in experiments[21,22], and used the γ − P in=Pth
curve to distinguish the self-focusing dominated region
(where self-focusing can occur) and dispersion-dominated
region (where self-focusing cannot occur):
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where γ ¼ LDF=LGVD and LGVD ¼ τ20=k
00 accounts for the

GVD length. From their explanation, we know that as the
input power of the laser pulse is fixed, according to
Marburger’s law, the collapse distance will increase with
the decreasing initial pulse duration. Therefore, we can
say that the two explanations are the same in a way,
for both can adequately explain the influence of the initial
pulse duration on the pulse collapse. In addition, after the
collapse, GVD will act in combination with the plasma
effect to enhance the defocusing effect and thereby
arrest the increase of the intensity. As a result, we see
in Figs. 1(a) and 1(a′) that the clamping intensity shows
a tendency to decrease as the GVD effect is enhanced.

Numerically solving the NLSE can obtain the accurate
collapse distance; however, it is time consuming, and an
intuitive self-focusing formula is needed in experiments
and engineering applications. Whether a revised self-
focusing formula suitable for more cases can be found still
remains an open question.

In view of the defocusing role that GVD plays, and here
utilizing the classical optical imaging principle and intro-
ducing the GVD length into the semi-empirical Marbur-
ger’s law, i.e., Eq. (3), we present a revised self-focusing
formula that may help solve the above problems:
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Fig. 1. Change of the (a) maximum intensity and (b) beam ra-
dius of 10 atm as the initial pulse duration is 30, 70, and 330 fs.
Change of the (a′) maximum intensity and (b′) beam radius for
30 fs pulses as the pressure is 1, 3, and 10 atm. P inðpÞ=PcrðpÞ ¼ 8
and w0 ¼ 1.2 mm.
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We can see from Eq. (5) that for pulses with longer du-
rations (larger τ0) or the low-pressure case (smaller k00),
LGVD is very large, resulting in 1

L0
c
≈ 1

Lc
, which indicates that

Eq. (3) is still applicable. In contrast, for shorter pulse or k00

with a higher value, LGVD is very small. Thus, LGVD > Lc,
L0
c will be larger thanLc, indicating that Eq. (3) is no longer

applicable, while when LGVD < Lc, L0
c is less than zero, this

indicates that self-focusing cannot occur. It means that
Eq. (5) can qualitatively describe the influence of GVD
on the collapse distance of a self-focusing pulse. In Fig. 2,
we present the change of the collapse distance calculated by
numerically solving the NLSE in the absence and presence
of GVD fromEq. (5). It can be seen from the figure that the
collapse distance calculated from Eq. (5) is in agreement
with the results of numerically solving the NLSE in the
presence of GVD. In addition, by comparing LGVD with
Lc, we can divide the collapse and filamentation processes
into strong and weak GVD cases: as LGVD is comparable
with Lc, it is a strong GVD case, and LGVD is much longer
than Lc, it is weak GVD one.
It should be noted that even in the absence of GVD,

there is still a little difference between the collapse dis-
tance calculated from Eq. (3) and that obtained by nu-
merically solving the NLSE. For instance, the collapse
distance calculated from Eq. (3) is Lc ¼ 1.077 m, and that
obtained by numerically solving the NLSE in the absence
of GVD is Lc ≈ 1.055 m (blue triangles in Fig. 2). To solve
this problem, a modified Marburger’s law has been pro-
posed by Couairon et al. to better match the collapse dis-
tance of the simulation result in the absence of GVD[23]:

Lc ¼ bMLDF=f½ðP in=PcrÞ1=2 − aM �2 − ð1− aM Þ2g1=2; (6)

where aM and bM are the free parameters determined by
the numerical results. In the original Marburger’s law, i.e.,
Eq. (3), their values are aM ¼ 0.852 and bM ¼ 0.376, while
in the modified one in Ref. [21], their values are aM ¼
0.7823 and bM ¼ 0.405. However, this modified formula
still fails to take the influence of GVD into consideration.

In the above discussion, P inðpÞ=PcrðpÞ is fixed as 8 and
the initial beam radius is selected as w0 ¼ 1.2 mm. It is
natural to raise the question of whether the revised for-
mula works accurately in a wide range of situations. In
Figs. 3(a) and 3(b), we present the change of the collapse
distance with pressure for 50 fs pulses and with the initial
pulse duration at 10 atm when P inðpÞ=PcrðpÞ ¼ 4 and
w0 ¼ 1.2 mm. It can be seen from the figure that the re-
vised formula still works, though the difference between
the collapse distance calculated from Eq. (5) and that ob-
tained by numerically solving the NLSE becomes larger.
As we increase the initial beam radius to w0 ¼ 2 mm,
and P inðpÞ=PcrðpÞ is fixed as 8, the collapse distances cal-
culated from the revised formula fit well with those calcu-
lated from the numerical simulation, as shown in Figs. 3(c)
and 3(d). For this reason, the revised formula works accu-
rately in a wide range of situations, though there exists
little difference between the collapse distance calculated
by numerically solving the NLSE in the presence of
GVD and using the revised formula. Many factors lead
to the discrepancy, such as the pulse self-compression dur-
ing pulse collapse and the intensity- and pulse duration-
dependent nonlinear refractive index (n2), which affect
the values of critical power for self-focusing Pcr.

In addition, it can be seen from Eq. (5) that as LGVD is
close to Lc, the L0

c will become very large, making the laser
pulse collapse at a longer distance. As the intensity
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Fig. 2. (a) Variation of the collapse distance with initial pulse
duration at 10 atm. (b) Variation of the collapse distance with
pressure for 30 fs laser pulse. The black circles and blue triangles
show the collapse distance calculated by numerically solving the
NLSE in the presence and absence of GVD, respectively; the red
squares present the collapse distance obtained from revised
formula. P inðpÞ=PcrðpÞ ¼ 8 and w0 ¼ 1.2 mm.
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Fig. 3. Change of the collapse distance (a) and (c) with pressure
for 50 fs pulses and (b) and (d) with the initial pulse duration at
10 atm. (a) and (b): P inðpÞ=PcrðpÞ ¼ 4 and w0 ¼ 1.2 mm; (c) and
(d): P inðpÞ=PcrðpÞ ¼ 8 and w0 ¼ 2.0 mm. The black circles and
red squares show the collapse distance calculated by numerically
solving the NLSE in the presence of GVD and the result obtained
from the revised formula.
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envelope and duration of laser pulse do not change much
before the pulse collapse due to the weak nonlinear effect
during this process (energy decay is quite small), we can
make the intense laser pulse self-focusing at a relatively
long distance.
In conclusion, in the weak GVD case, we can calculate

the collapse distance directly from the semi-empirical
Marburger’s law, while in the strong GVD case,
Marburger’s law is no longer applicable. By introducing
the GVD length into Marburger’s law, a revised formula
for Marburger’s law is given. This concise and explicit
formula can not only well explain the influence of GVD
on the collapse distance, but is also in good agreement
with the numerical results in a wide range of situations,
making the self-focusing formula applicable for more
cases, which may be helpful in engineering applications.
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